
Oolite Regular Expression Library
Version 1.0 Beta2    December 8 1995
Ported by Rob Reiss (Rob_Reiss@msn.com)

Introduction
    This package provides C++ and Visual Basic functions that perform regular expression matching.    The library
was specifically built for Windows95 and Windows NT operating systems and has not been tested under any other
platforms. Please see the Legal Notice for information on redistribution of this package and a DISCLAIMER OF
ALL WARRANTIES.

Acknowledgments
This library was created by modifying regular expression code originally written by Henry Spencer.    I found Henry
Spencer’s code among the source files for the TCL language created by John Ousterhout.    I would like to thank
both of these people for the great source code they make available to the world.

        General:
              Installation
              Regular Expressions
              Sample Code
              Legal Notice

Visual Basic API C++ API C++ Low Level API
    RegExp     OolRegExpr OolRegComp
    RegSub     OolRegIndx OolRegCompCache
    RegExpIndx OolRegExec

OolRegRange
File Info:

oolregex.dll, oolregex.h, oolregex.lib, oolregex.bas, VBTest, CPPTest

    Source Code And DLL License:
Source code and a royalty free licenses to distribute the oolregex.dll separately is available for    $500 (Dec
8 1995, price may change)      Note: you are still allowed to distribute this package and use it for any reason
without charge on the condition that you do not break it up (i.e. distribute the oolregex.dll with out the rest
of the package). See the Legal Notice.    For more information please email Rob_Reiss@msn.com
P.S.    You can also obtain the core regular expression code for free through the TCL distribution. Please see
http://www.smli.com/research/tcl for more information about TCL.

oolregex.dll:   

Windows 32bit dll that contains the code to perform regular expression matching on strings.    This file should be
installed into the end users Windows System directory.

oolregex.h:
C++ header file that can be included in your C++ projects to access the regular expression calls in oolregex.dll.

oolregex.lib:
C++ link libraray that can be linked to your C++ projects to link to oolregex.dll

regexp.bas:
Visual Basic 4.0 module that can be included in VB applications to access the regular expression library.

VBTest:
A Simple example program showing how to access the regular expression library from Visual Basic

CPPTest   
A Simple example program showing how to access the regular expression library from C++

Introduction

    The regular expression library can be used to match regular expressions to strings from Visual Basic or C++.   
This library was created by modifying code distributed with the TCL language.    The regular expression code was
originally written by Henry Spencer. John Ousterhout incorporated Henry Spencer’s code into TCL where I found it.
I modified the code so that it was easily called by C++ and Visual Basic.    I also changed the error reporting scheme
and made it thread safe.    Please see the Legal Notice for information on usage and redistribution of this package,
and for a DISCLAIMER OF ALL WARRANTIES.

Enjoy,
Rob Reiss
Rob_Reiss@msn.com

Installation

To install Oolite Regular Expression library simply copy the file oolregex.dll to your Windows directory.    (NOTE:   
you do not need to do this to use the sample programs)

Sample Code

Included with the RegExp Library are the two programs VBTest and CPPTest.    These programs demonstrate
how to use the RegExp Library from Visual Basic and C++ respectively.    I suggest you jump right in and look at the
code in these examples to get a quick understanding of how to use the regular expression library.

The main functions to look at are Match_Click in VB and CRegExpTestDlg::OnButtonMatch in C++.   

CPPTest was built using Microsoft Visual C++ 4.0 and the source code is located in the CPPTest directory.
VBTest was built using Microsoft Visual Basic 4.0 and the source code is located in the VBTest directory.

Private Sub Match_Click()
      Dim Match As Boolean
      Dim str1 As String, str2 As String, str3 As String, str4 As String
      On Error GoTo ErrorHandler
     
      Match = RegExp(inputString.Text, RegExpInput.Text, str1, str2, str3)
      Match = RegSub(inputString.Text, RegExpInput.Text, Substitute.Text, str4, 1)
      res1.Text = str1
      res2.Text = str2
      res3.Text = str3
      res4.Text = str4
      If Match = True Then
        MsgBox "String Matches", vbOKOnly, "Match Result"
      Else
        MsgBox "String does not match.", vbOKOnly, "Match Result"
      End If
        Exit Sub
ErrorHandler:
        If Err.Number <> 0 Then
                Msg = Err.Description
                MsgBox Msg, , "Error", App.helpfile, Err.HelpContext
        End If
End Sub

void CRegExpTestDlg::OnButtonMatch()
{

UpdateData(TRUE);
int match;
char* res1;
char* res2;
char* res3;
match = OolRegExpr(m_string, m_regexp, &res1, &res2, &res3, NULL);
m_res1 = res1;
m_res2 = res2;
m_res3 = res3;
UpdateData(FALSE);
if (match == S_OK)
{

AfxMessageBox("Pattern Matches!");
} else {

AfxMessageBox("No Match");
}

}

Error Codes

E_UNEXPECTED "Unexpected Error"
E_OUTOFMEMORY "Out of Memory"
E_INVALIDARG "Invalid Argument”
E_REGEXPTOOBIG "The Regular Expression was too big"
E_REGEXPTOOMANYPAREN "Too many ()'s in the Regular Expression"
E_REGEXPUNMATCHPAREN "Unmatched ()'s in the Regular Expression"
E_REGEXPSTARPLUSEMPT "Possible problem with *+"
E_REGEXPNESTED "Nested *?+ in Regular Expression"
E_REGEXPINVALIDBRKRANGE "Invalid [] range in Regular Expression"
E_REGEXPUNMATCHBRACKET "Unmatched [] in Regular Expression"
E_REGEXPOPFOLLOWSNOTHING "?+* follows nothing in Regular Expression"
E_REGEXPTRAILINGSLASHS "Trailing backslashes in Regular Expression"

Visual Basic RegExp Function
Matches a regular expression to a string returning TRUE if there is a match and FALSE otherwise.   
RegExp also returns the substrings of the input string that matched the sub-expressions in the regular
expression.

Syntax
 RegExp(String, Exp [, MatchVar, subMatchvar, …])

    Argument Description
String Required.    A string expression containing the input string to be scanned.
Exp Required.    A string expression containing the regular expression.
MatchVar Optional.    A string variable that will be set to the range of String that

matched all of Exp
subMatchVar Optional.    A string variable that will be set to the range of String that

matched the nth subexpression within Exp.   

Returns:
True if Exp matches part or all of String, otherwise False.

Remarks:
Determines whether the regular expression Exp matches part or all of String and returns True if it does,
False if it doesn't.
If additional arguments are specified after String then they are treated as the names of variables in which
to return information about which part(s) of String matched exp.    MatchVar will be set to the range of
String that matched all of exp.    The first subMatchVar will contain the characters in String that matched
the leftmost parenthesized subexpression within exp, the next subMatchVar will contain the characters
that matched the next parenthesized subexpression to the right in exp, and so on.

Errors:    See Error Codes

Example:
Dim substr1 As String, substr2 As String
Dim match As Boolean
match = RegExp("abc", "(ab|a)(b*)c", substr1, substr2)

After these calls the variables will hold the following values:
match = TRUE, substr1 = "abc", substr2 = "ab"

See Also

RegSub, RegExpIndx

Visual Basic RegSub Function
    Perform a string substitution based on regular expression pattern matching

Syntax
 RegSub(InputString, Exp, SubstituteString, ReturnString, [Position])

    Argument Description
InputString Required.    A string expression containing the input string to be scanned.
Exp Required.    A string expression containing the regular expression.
SubstituteString Required.    A string expression that will be used to replace the portion of

InputString that matches Exp
ReturnString Required.    A string variable that will be set to the result of substituting in

SubstituteString into InputString.
Position Optional:    An Integer specifying which sub-expression should be used

for substitutions

Returns:
True if Exp matches part or all of String, otherwise False.

Remarks:
This command matches the regular expression Exp against InputString, and it copies InputString to the
variable whose name is given by ReturnString.    If there is a match, then while copying InputString to
ReturnString the portion of InputString that matched Exp is replaced with SubstituteString.    If Position is
given then the substring that matched the nth sub-expression will be replaced by SubstituteString, where
nth is given by Position.

Errors:    See Error Codes

Example:
Dim substr1 As String
Dim match As Boolean
match = RegSub("abc", "(ab|a)(b*)c", "Hello",substr1, 1)

After these calls the variables will hold the following values:
match = TRUE, substr1 = "Helloc"

See Also
RegExp, RegExpIndx

Visual Basic RegExpIndx Function

Syntax
 RegExpIndx(InputString, Exp , IndexArray, NoCase)

    Argument Description
InputString Required.    A string expression containing the input string to be scanned.
Exp Required.    A string expression containing the regular expression.
IndexArray Required.    A (2,x) dimension array of Integers.    RegExpIndx will return

the character indexes of the substrings that Exp matches in String in
IndexArray

NoCase Required.    Can be set to 0 or 1.    When NoCase = 1 the regular
expression comparison will use case insensitive matching.    . When
NoCase = 0 the regular expression comparison will use case sensitive
matching.

Returns:
An HRESULT with a value of
S_OK if the expression matched
S_FALSE if the expression didn’t match
An Error Codeif an error occurred.

Remarks:
Determines whether the regular expression Exp matches part or all of InputString and returns S_OK if it
does, S_FALSE if it doesn't.
After the call to RegExpIndx IndexArray will hold the starting and ending positions of the substrings that
matched Exp.    i.e.
Indx(0,0) = Position of first character of substring of InputString that matched Exp
Indx(1,0) = Position of last character of substring of InputString that matched Exp
Indx(0,n) = Position of first character of substring of InputString that matched the nth sub-expression of Exp
Indx(1,n) = Position of last character of substring of InputString that matched the nth sub-expression of Exp

See Also
RegExp, RegExpIndx

C++ OolRegIndx Function
Syntax
HRESULT OolRegExpIndx(const char* InputString,const char* Exp , IndexArr(2,NSUBEXP), NoCase)

    Argument Description
InputString Required.    A string expression containing the input string to be scanned.
Exp Required.    A string expression containing the regular expression.
IndexArray Required.    A (2,50) dimension array of Integers.    OolRegIndx will return

the character indexes of the substrings that Exp matches in InputString
in IndexArray

NoCase Required.    Can be set to 0 or 1.    When NoCase = 1 the regular
expression comparison will use case insensitive matching.    . When
NoCase = 0 the regular expression comparison will use case sensitive
matching.

Returns:
An HRESULT with a value of
S_OK if the expression matched
S_FALSE if the expression didn’t match
An Error Codeif an error occurred.

Remarks:
Determines whether the regular expression Exp matches part or all of InputString and returns True if it
does, False if it doesn't.
After the call IndexArray will hold the starting and ending positions of the substrings that matched Exp.    i.e.
Indx(0,0) = Position of first character of substring of InputString that matched Exp
Indx(1,0) = Position of last character of substring of InputString that matched Exp
Indx(0,n) = Position of first character of substring of InputString that matched the nth sub-expression of Exp
Indx(1,n) = Position of last character of substring of InputString that matched the nth sub-expression of Exp

C++ OolRegExpr Function
Matches a regular expression to a string returning S_OK if there is a match and S_FALSE otherwise.   
OolRegExpr also returns the substrings of the input string that matched the sub-expressions in the regular
expression.

Syntax
HRESULT OolRegExpr(const char* String, const char* Exp, char*…)

    Argument Description
String string containing the input string to be scanned.
Exp string containing the regular expression.
Optional Args Optional.    Any number of char* followed by NULL

Returns:
S_OK if Exp matches part or all of String, otherwise S_False.
If an error occurs OolRegExpr will return an Error Code.

Remarks:
Determines whether the regular expression Exp matches part or all of String and returns True if it does,
False if it doesn't.
If additional arguments are specified after String then they are treated as the names of variables in which
to return information about which part(s) of String matched exp.    MatchVar will be set to the range of
String that matched all of exp.    The first subMatchVar will contain the characters in String that matched
the leftmost parenthesized subexpression within exp, the next subMatchVar will contain the characters
that matched the next parenthesized subexpression to the right in exp, and so on.

Example:
char* substr1, substr2;
HRESULT match = OolRegExpr("abc", "(ab|a)(b*)c", substr1, substr2, NULL)

After these calls the variables will hold the following values:
match = S_OK, substr1 = "abc", substr2 = "ab"

See Also
OolRegIndx

C++ OolRegComp and OolRegCompCache Functions
Compiles a regular expression returning a oolregexp structure that may be used in a call to OolRegExec,
OolRegSub, and OolRegRange.

Syntax
HRESULT OolRegComp(const char* Exp, oolregexp* Reg)
HRESULT OolRegCompCache(const char* Exp, oolregexp* Reg)

    Argument Description
Exp string containing the regular expression.
Reg The compiled regular expression will be passed back in this pointer

Returns:
S_OK if compilation of Exp worked, otherwise an Error Code.

Remarks:
OolRegComp compiles a regular expression so that it can be used to match against strings using
OolRegExec.
OolRegCompCache does the same thing as OolRegComp except that it uses a cache of compiled
regular expression to speed up processing
WARNING:    The caller is responsible for freeing the memory allocated for reg when you use
OolRegComp but the caller should NOT free Reg when OolRegCompCache is used.
(OolRegCompCache will automatically free storage when the cache becomes full)

Example:
oolregexp* reg, regCached
HRESULT match = OolRegComp("(ab|a)(b*)c", reg)
HRESULT match = OolRegCompCache("(ab|a)(b*)c", regCached)
---- use reg and regCache ---
free(reg);    // Make sure to free reg when your done. BUT don’t free regCached

See Also
OolRegExec

C++ OolRegExec Function
Matches a regular expression to a string returning S_OK if there is a match, S_FALSE if there is no
match, and an Error Code otherwise.

Syntax
HRESULT OolRegExec(oolregexp* Exp, const char* String, const char* StartString)

    Argument Description
String string containing the input string to be scanned.
Exp oolregexp containing the compiled regular expression.
StartString The starting point withing String to start the comparison

Returns:
S_OK if Exp matches part or all of String
S_False if Exp does not match any part of String
Or an Error Code.

Remarks:
Determines whether the regular expression Exp matches part or all of String and returns True if it does,
and False if it doesn't.

Example:
oolregexp* reg;
char* str1 = "abc"
HRESULT match = OolRegComp("(ab|a)(b*)c", reg)
HRESULT match = OolRegExec(reg, str1, str1);
free(reg);

After these calls the variables will hold the following values:
match = S_OK

See Also
OolRegComp, Regular Expression

C++ OolRegRange Function
Returns information about what portion of an input string matched.

Syntax
HRESULT OolRegRange(oolregexp* Exp, int Index, char** StartPtr, char** EndPtr)

    Argument Description
Exp oolregexp containing the compiled regular expression.
Index Index is used to indicate which subexpression in Exp you are interested in

getting information about. (Index = 0 for entire match)
StartString returns a pointer to a pointer to the first character in the Input String that

matched the Index’th subexpression
StartString returns a pointer to a pointer to the character just after the last character that

matched the Index’th subexpression

Returns:
S_OK if Exp matches part or all of String
S_False if Exp does not match any part of String
Or an Error Code.

Remarks:
Returns the pointers to the beginning and end of the portiion of the input string that matched the Index’th
subexpression

See Also
OolRegComp, OolRegExec, Regular Expression

REGULAR EXPRESSIONS (Taken directly from the TCL distribution.)

Regular expressions are implemented using Henry Spencer's package (thanks, Henry!), and much of the description
of regular expressions below is copied verbatim from his manual entry.

A regular expression is zero or more branches, separated by "|".    It matches anything that matches one of the
branches.
A branch is zero or more pieces, concatenated.    It matches a match for the first, followed by a match for the second,
etc.
A piece is an atom possibly followed by "*", "+", or "?".
An atom followed by "*" matches a sequence of    0 or more matches of the atom.
An atom followed by "+" matches a sequence of 1 or more matches of the atom.
An atom followed by "?" matches a match of the atom, or the null string.
An atom is a regular expression in parentheses (matching a match for the regular expression), a range (see below),
"." (matching any single character), "^" (matching the null string at the beginning of the input string), "$" (matching
the null string at the end of the input string), a "\e" followed by a single character (matching that character), or a
single character with no other significance (matching that character).
A range is a sequence of characters enclosed in "[]". It normally matches any single character from the sequence. If
the sequence begins with "^", it matches any single character not from the rest of the sequence. If two characters in
the sequence are separated by "\-", this is shorthand for the full list of ASCII characters between them (e.g. "[0-9]"
matches any decimal digit). To include a literal "]" in the sequence, make it the first character (following a possible
"^").    To include a literal "\-", make it the first or last character.

CHOOSING AMONG ALTERNATIVE MATCHES

In general there may be more than one way to match a regular expression to an input string.    For example, consider
the command
regexp    (a*)b*    aabaaabb    x    y
Considering only the rules given so far, x and y could end up with the values aabb and aa, aaab and aaa, ab and a,
or any of several other combinations.    To resolve this potential ambiguity regexp chooses among alternatives using
the rule "first then longest".    In other words, it considers the possible matches in order working from left to right
across the input string and the pattern, and it attempts to match longer pieces of the input string before shorter ones.   
More specifically, the following rules apply in decreasing order of priority:
[1]
If a regular expression could match two different parts of an input string then it will match the one that begins
earliest.
[2]
If a regular expression contains | operators then the leftmost matching sub-expression is chosen.
[3]
In *, +, and ? constructs, longer matches are chosen in preference to shorter ones.
[4]
In sequences of expression components the components are considered from left to right.

In the example from above, (a*)b* matches aab:    the (a*) portion of the pattern is matched first and it consumes
the leading aa; then the b* portion of the pattern consumes the next b.    Or, consider the following example:
regexp    (ab|a)(b*)c    abc    x    y    z
After this command x will be abc, y will be ab, and z will be an empty string. Rule 4 specifies that (ab|a) gets first
shot at the input string and Rule 2 specifies that the ab sub-expression is checked before the a sub-expression. Thus
the b has already been claimed before the (b*) component is checked and (b*) must match an empty string.

KEYWORDS
match, regular expression, string

Legal Notice:
Copyright (c) 1995 by Rob Reiss
All Rights Reserved

The “Oolite Regular Expression Library” may be freely distributed as a package. The contents of "the package"
(compressed file) may not be broken up or added to, nor may any of the contents of the package be altered in any
way without expressed permission from the author. The program is not public domain and remains the property of
the author.
The source code for Oolite RegExp is available for $500 please email Rob_Reiss@msn.com

IN NO EVENT SHALL THE AUTHORS OR DISTRIBUTORS BE LIABLE TO ANY PARTY
FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES
ARISING OUT OF THE USE OF THIS SOFTWARE, ITS DOCUMENTATION, OR ANY
DERIVATIVES THEREOF, EVEN IF THE AUTHORS HAVE BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
THE AUTHORS AND DISTRIBUTORS SPECIFICALLY DISCLAIM ANY WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT.    THIS SOFTWARE
IS PROVIDED ON AN "AS IS" BASIS, AND THE AUTHORS AND DISTRIBUTORS HAVE
NO OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR
MODIFICATIONS.

